

 18

Chapter 3
The Framework of SSL Proxy Server

3.1 General Concept

The design of SSL proxy server aims at being performing SSL traffic decryption

and extracting the origin contents of HTTPS traffic. Once the HTTPS traffic has been

decrypted, it provides any application layer services with plain-text traffic. For

example, it provides the application firewall with plain-text traffic for deep inspection.

As the SSL proxy server was proposed in conjunction with application firewall the

inspection engine is now able to inspect every packet in an unencrypted format. In

addition, the SSL proxy server also provides several application- layer services such as

proxy caching technique due to original cipher-text traffic has been decrypted.

The SSL proxy server sits logically intervening between web server and clients.

The essential framework was also illustrated in Figure 7. The framework is referred to

as a transparent middle-ware service by leveraging available communication methods.

And it was built under a common, open protocol for edge-based appliance

communication. The SSL proxy server monitors network traffic before the packet

reaches the web server and extracts the SSL streams and deals with content

processing.

 19

Figure 7. The concept of SSL Proxy Server.

Figure 8 represents the practical network environment. Once the client’s request

reaches the entry guard firewall on port 80, the firewall always makes a decision to

pass the traffic through application firewall or application layer services. After making

confirmation of content security, it forwards to origin web server. The novel

deployment of SSL proxy server now has a great advantage for keeping present

devices unchanged and just adds up another route. Suppose a request attempts a

connection to port 443 on the web server, the firewall lets the request to redirect and

policy route to SSL proxy server. An open standard protocol, named as ICAP [27],

leverages existing equipments available and then chooses the appropriate value-added

application provider. The client’s request is redirected to application firewall by the

intervening SSL proxy server. The application firewall checks the content, ensures it

valid, and then sends it back to SSL proxy server. The SSL proxy server forwards it to

the origin web server to fulfill client’s request. On the opposite direction, the response

from origin web server also has the similar processes through SSL proxy server. Now

the network administrator performs content-based manipulation as general serving

HTTP traffic.

 20

Figure 8. Practical deployment of the SSL proxy server

The potential features of framework of SSL proxy server are required as listed

below:

l Security

Depend upon administrator’s control it ensures the certain level of security

between end-to-end communications. No one except SSL proxy server

eavesdrops the content of the transaction.

l Transparent

It is a transparent proxy and does not ask for client’s configuration. A client

thinks it is talking directly to server and on the contrary a server thinks it is

talking directly to the client or cache.

l Flexibility

The framework provides more value-added services and makes scalability

and compatibility with existing secure devices such as firewalls. Not only

holds the principle of simple is good, but also to be a modular architecture.

That is, services should be able to be added and removed and be treated to

specific components of the framework.

The primarily design in this thesis was concentrated on the methodology for

 21

extracting HTTPS traffic in SSL proxy server. The SSL proxy server was shown from

the essence diagram that acts as a server in facing to incoming clients as well as acts

as client in facing to origin web server. The proxy work has both socket and SSL

functionalities for both client and server at one time. In later implementation has

contained additional codes to present the proxy caching and content filtering. The

framework was implemented by the industry-standard OpenSSL library [28] [29]. The

library supports SSL 2.0 / 3.0 and TLS.

3.2 Essential Framework

The essential framework of SSL proxy server and relationship between client and

web server are shown in Figure 7. The primarily effort lies in splitting the secure

connection into two connections and then joint them. About the task has separated

into two phases. First phase of task is to establish connection and transfer data in the

second phase.

The first phase of processing the connection establishment handled by SSL proxy

server is shown in Figure 9. While the client initiates request by sending message,

SSL proxy server first intercepts the traffic and acts as a server, performs TCP 3-way

handshaking and in turn SSL handshaking. The negotiation steps include exchanges

certificate, selects cipher suite and generates pre_master_secret key. Next, SSL proxy

server does not send another request to the web server. Instead, it waits for the first

HTTP request that may contain URL within GET, POST, or CONNECT, etc. An

apparent methodology may be considered that establishing connection in both sides

before content data transmission. However, swapping two steps, connecting to server

and receive first HTTP request, it would have more benefits. First, after examining

first HTTP request message it then performs both TCP 3-way handshaking and SSL

 22

handshaking to origin web server. Conversely, once any malicious request occurs,

SSL proxy server immediately drops the connection rather establishes it to origin web

server. After having confirmation that the request is legitimate, the SSL proxy server

now joints two segments of connections. The communication between the client and

the server walks through SSL proxy server is established.

Client SSL Proxy Server
Accept Client’s TCP
Handshaking

Negotiate SSL handshaking
with client

Accept and decrypt Client’s
request

TCP Handshake with server

Negotiate SSL handshaking
with server

Encrypt and send request
message

Decrypt and inspect replied
message, then encrypt and
send to client

Client SSL Proxy Server
Accept Client’s TCP
Handshaking

Negotiate SSL handshaking
with client

Accept and decrypt Client’s
request

TCP Handshake with server

Negotiate SSL handshaking
with server

Encrypt and send request
message

Decrypt and inspect replied
message, then encrypt and
send to client

Figure 9. SSL proxy server handles connections.

 After two connections are established and jointed, rhe client and server can

exchange application data over encrypted, authenticated link that has been established.

Meanwhile, the content is extracted by SSL proxy server. It then acquires the plain

text in every on-the-fly packet. On the way to another side, the SSL proxy server

re-encrypts with another session key and forwards the packet. In fact, the SSL proxy

server processes in the transparent mode in the client’s standpoint of view.

There is a couple of reasons why receive HTTP first request message before

establishing connection to the origin web server. The first reason has been explained

 23

in previous paragraph. The request message could be decrypted and inspected in

advance. As long as the incoming request message involved with malicious patterns

or anomy signatures, the inspector engine sends an alarm, drops the packet, or takes

other protection actions. And it is not necessary to establish another connection

between SSL proxy server and the web server. Another reason is due to the system

can perform proxy cache function [30] after decrypting client’s request. Since the

traffic beyond the encryption channel, traditional proxy could not see through the

content. However, the system has the cryptographic ability to decrypt and check if it

hits in the proxy cache. In the some situation, such as object is cacheable, cache timer

is not yet out of expiration, the proxy cache can mitigate the server’s loading. The

integrity combination of decryption, proxy cache, inspection and encryption was

illustrated in the Figure 10 and Figure 11 for request and response respectively.

 According to the Figure 10 the detail steps of request procedure are explained in

below.

 1. First step is to receive incoming traffic, decrypt it using symmetric key and

then decode it into plaintext form.

 2. Next, the sets of rules are used to determine if the representation exists in the

proxy cache or force caches to submit the request to the origin web server for

validation again.

 3. If the representation is available in the proxy cache, the respondent content is

served from cache. Prior to sending back to a client, the representation is

required to be encrypted. One critical point we discuss here is, neither request

nor response should be inspected result from the content must be not

threateningly so that it already cached before.

 4. Otherwise, it indicates that the representation misses from the cache or the

request explicitly requires up-to-date (no-cache) data.

 24

 5. Prior to sending the request to server, delivered it to the inspection engine

where the network packets are analyzed against the database of attacks and

vulnerabilities.

 6. In finally, it encrypts the message with the symmetric key shared with server

and then sends the request to origin web server at present.

 On the other side, the steps of response procedures are clearly listed as below

and briefly shown in Figure 11.

 1. At first, once the SSL proxy server receives SSL stream from web server’s

reply, then it extracts SSL stream.

 2. The procedures of examining plain-text content are the same as incoming

request procedure mentioned above. Once the malicious patterns or anomy

signatures are matched, the SSL proxy server then drops this packet and

terminates this connection.

 3. Suppose the response content could be cached, the content was been cached as

named as its URI in the proxy cache.

 4. Regardless of cache or not, finally, the response content has to be encrypted

with the key shared with client and passed to client.

 25

Figure 10. The process of client’s request.

Figure 11. The process of response from server.

3.3 Aggregative Framework

For the achievement of inspecting secure traffic, the SSL proxy server intercepts

the encryption traffic and splits one connection into two connections. It indicates

 26

twice the expensive full handshaking protocol in the interval of client-proxy and that

of proxy-server individually. To explore the potentials of further improvements, this

framework takes advantage of using resume handshake instead of using full

handshake between proxy and server. The burden of establishing a new SSL session is

reduced by reusing previously established SSL session ID’s. Figure 12 shows the SSL

proxy server uses only one SSL session to connect the web server. It looks like

aggregation of many pipes into single one. TCP connections remain 1:1, but the

relationship between front-end clients and back-end SSL session is N:1. This

methodology is then called as aggregative framework.

Server Address Port Session ID Cipher Suite
Cert.

Info.
Timer

140.114.71.160 443 caf0f930 RC4-SHA … 300

Figure 12. Aggregative Framework.

Consider Figure 12 as an example. Once any connection established from outside

to the web server belongs IP address 140.114.71.160, the cipher suite RCA-SHA and

session id caf0f930 in the segment between SSL proxy server and origin web server

are shared. On the other hand, while connecting to the web server 140.114.71.161, the

 27

cipher suite EXP-AES128-MD5 and session id 2d057a4 in the segment between SSL

proxy server and origin web server are shared.

According to [31], whereas full handshake needs 172 ms, resume handshake just

needs 7 ms in general. The major improved factor is to eliminate the asymmetric

cryptographic processing. We also experimented with browsing and requesting a

HTTPS web page, observed that 1662 bytes are transferred by the full handshake of

requesting a page. However, that for resume handshake of requesting a page is 429

bytes. Even though the precise numbers depend on the selected cipher suite,

certificate created by the server, or SSL related settings, it does take advantage of

using resume handshake. Not only the response time but also the bandwidth

utilization can be improved in the meantime under using resume handshake.

 For accomplish the purpose of reusing session from cache, the session id is the

key point to use resume handshake. Considerable effort has been invested in sharing

the session between several forked processes. Web server program generally has

several client requests in progress at the same time. As SSL proxy server forks a

process for each connection as it arrives. Therefore, several communications pass

through system as pipeline. The share memory mechanism [32] [33] was exploited

among these simultaneous running processes so as to access the session data structure.

The SSL proxy server is implemented by creating two session tables for reusing

handshake information in facing to client’s connection and in connecting to server, as

shown in Figure 13. Another implementation issue is the web server in general holds a

session cache so that the later coming connections could be accepted with resume

session ID. However, in the cause of security that if session stays for a long time and

the more weak exposed that symmetric cryptographic works. Therefore, the web

server will clear its session cache every certain time and force re-perform full

handshake. For example, one of the most common web servers, Apache uses the

 28

default value 300 seconds. Consequently, the SSL proxy server has to maintain

synchronal session from origin web server so as to having benefit of resume

handshaking.

Figure 13. Check session table in order to use resume handshake.

3.4 Selectivity Content Framework

The primary advantage of using resume handshake achieved eliminating the

computing of asymmetric cryptographic, that resulted in reducing overhead during the

 29

handshaking. In other words, resume handshake technique helps reforming the

overhead of establishing connection, however, but not makes any impact on the

following request and its response. In order to improve data transferring, this design

aims at transferring specific embedded objects with lightweight encryption.

With regard to the browser, browsing a single web page tends to result in

numerous connections because the page contains a mix of numerous representations,

including HTML text, JPG/GIF pictures, media streaming or embedded Flash objects,

etc. When users visit a typical webpage, they download several files. For instance,

there are a lot of product’s photos in a shopping site. There also are a lot of blank

forms in a business site. It has been pointed out that around 81% pages have more

than one object and more than 70% pages contain image files [34]. Table 1 shows the

similar statistic that more than 77% of the requests contain image types or other

non-text types [35].

Table 1. Request object type popularities.

The hypothesis of these embedded representations could be exposing to inside

users. These representations are allowed to transfer without encryption between proxy

server and web server since these objects could be identified. For example, if a user

visited Amazon's webpage at www.amazon.com, he would download over forty

separate files such as advertising banner, sample picture, or a blank form. Therefore,

the framework enables that transfer these representations without encryption overhead

in the preceding of not to altering the settings of the server.

 30

The idea of only applying security process to sensitive elements of a data stream

is derived from [36]. Thus, the framework is named as selectivity content framework .

However, neither motivation nor methodology is the same.

The SSL protocol is designed to support an ample range of selecting specific

algorithms used for cryptography, digests, and signatures. Choices are negotiated

between client and server at the start of establishing a protocol session. In this regard,

the SSL protocol allows the user to choose the available algorithms. For example, the

cipher suite SSL_RSA_WITH_RC4_128_MD5 means that using a RSA asymmetric

for key exchange and a RC4-128-bits symmetric algorithm for secure transfer and

additional MD5 hash function can be used. In particular, take a focus on special

cipher suite SSL_NULL_WITH_NULL_NULL, it does not provide any security. It is

always set at beginning of the SSL handshake protocol. For the security sake, most

web servers and browsers prohibit from setting manually this cipher suite. In the

preceding of not to altering the settings of the server, the web server even not supports

cipher suite SSL_NULL_WITH_NULL_NULL. Instead, the

SSL_RSA_WITH_NULL_MD5 are chosen to apply to the connection between proxy

server and web server. Thus, eliminates the effort of symmetric cryptographic

computing. As a result, while using both resume handshake and

SSL_RSA_WITH_NULL_MD5, the transfer uses neither asymmetric exchange nor

symmetric encryption. We call this operation as Null-Encryption. The extra gain is to

off- load SSL processing from server.

Consider the example shown in Figure 14. Suppose a client attempts to request

the general representations such as html type or script type, these text type

representations are encrypted with RC4-SHA cipher suite in the connection segment

between SSL proxy server and web server. Once it requests other type representations

such as image, flash files, or public disclosure files, these objects are transferred

 31

within NULL-MD5 cipher suite. The NULL-MD5 cipher saves the symmetric

cryptographic effort than RC4-MD5.

 In summary, two virtually connections result from dual sessions between proxy

server and web server, one uses resume handshake and symmetric encryption for

general private data stream, and the other uses resume handshake but no encryption

for certain images, videos, flash objects. The ideas can be applied to those target

representations, such as public images, background media streaming, global files, or

announcement documents. However, the classification for objects needs to be

customized by administrator.

Server Address Port Session ID Cipher Suite Cert. Info. Timer

140.114.71.160 443 caf0f930 RC4-SHA … 300

140.114.71.160 443 2d057a4 NULL-MD5 … 300

Figure 14. Selectivity Content Framework.

3.5 Implementation of SSL Proxy Server

This section introduces the functionalities of SSL proxy server. The user

interface is designed for monitoring traffic and showing handling results as illustrated

 32

in Figure 15. An amount of events and processes are also stated. Regard of layout of

user interface, in top half of Figure 15 all incoming requests are listed in the

Connection Info Table. Two text boxes in bottom half of Figure 15 shows out

plain-text content include request and response for any given rows in top list table.

The Treat column is the most important reaction in the connection segment between

SSL proxy server and origin web server.

 In the beginning, the first row properly indicates the first incoming request.

Therefore, full handshake is required to establish in the connection segment between

SSL proxy server and web server. Afterward, all incoming requests need only resume

handshake until the 8th row. The 8th row exploits full handshake again result from

session time is expired for 300 seconds. In reality, another specialized process is

implemented to maintain synchronized session information periodically and provide

up-to-date session id. These two connections (i.e. 1st and 8th) are demonstrated to

perform full handshake and session timer settings.

The following second and third incoming connections attempt to request

individual files, they have benefit of using resume handshake. The 4th request

acquires the same object that first request does, hence it gets the response, a copy of

representation from cache. As to 5th and 6th requests, they ask for image type objects,

the connections between SSL proxy server and web server use Null-Encryption

mechanism. Finally, last two rows are explained as shown in the Figure. Actually,

they represent malicious traffic: the former has predefined suspicious patterns in the

request packet, and the latter has been found in the response message. The action will

be taken for dropping them. We observed that, in the case proxy caching or attack

activity in request (ex. 11th row), these requests need no another connections to be

established from SSL proxy server to web server. Therefore, the P-S Session and P-S

Cipher left a blank cell.

 33

Figure 15. User interface for monitoring the incoming requests.

